|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Квадрат со стороной 9 клеток разрезали по линиям сетки на 14 прямоугольников таким образом, что длина каждой стороны любого прямоугольника не меньше, чем две клетки. Могло ли оказаться так, что среди этих прямоугольников не было ни одного квадрата? Существует ли четырехугольник, который можно разрезать двумя прямыми на 6 кусков? |
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 644]
Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
На клетке b8 шахматной доски написано число –1, а на всех остальных клетках число 1. Разрешается одновременно менять знак во всех клетках одной вертикали или одной горизонтали. Докажите, что сколько бы раз мы это ни проделывали, невозможно добиться, чтобы все числа в таблице стали положительными.
У продавца имеются чашечные весы с неравными плечами и гири. Сначала он взвешивает товар на одной чашке, затем – на другой и берёт средний вес. Не обманывает ли он?
Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 644] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|