|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан выпуклый четырехугольник $ABCD$. Прямая $l \parallel AC$ пересекает прямые $AD, BC, AB, CD$ в точках $X, Y, Z, T$. Описанные окружности треугольников $XYB$ и $ZTB$ вторично пересекаются в точке $R$. Докажите, что $R$ лежит на прямой $BD$. Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит? |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 99]
Решите уравнение 3x + 5y = 7 в целых числах.
Найдите все целые решения уравнения 3x – 12y = 7.
Решите в целых числах уравнение 1990x – 173y = 11.
Найдите все целые решения уравнения 21x + 48y = 6.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 99] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|