Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 77961  (#1)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 3
Классы: 9,10,11

Решить систему уравнений:   x1x2 = x2x3 = ... = xn–1xn = xnx1 = 1.

Прислать комментарий     Решение

Задача 77962  (#2)

Темы:   [ Цилиндр ]
[ Куб ]
Сложность: 4
Классы: 10,11

Поместить в полый куб с ребром a три цилиндра диаметра $ {\frac{a}{2}}$ и высоты a так, чтобы они не могли менять своего положения внутри куба.
Прислать комментарий     Решение


Задача 77959  (#3)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 9,10

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.

Прислать комментарий     Решение

Задача 77963  (#4)

Темы:   [ Вычисление углов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Применение тригонометрических формул (геометрия) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 9,10,11

В равнобедренном треугольнике ABC  ∠ABC = 20°.  На равных сторонах CB и AB взяты соответственно точки P и Q так, что  ∠PAC = 50°  и  ∠QCA = 60°.
Докажите, что  ∠PQC = 30°.

Прислать комментарий     Решение

Задача 77964  (#5)

Темы:   [ Числовые таблицы и их свойства ]
[ Отношение порядка ]
Сложность: 2+
Классы: 6,7,8,9

200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .