|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
На острове живут лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. Каждый из них сделал по два заявления: 1) "Среди моих друзей – нечётное количество рыцарей"; 2) "Среди моих друзей – чётное количество лжецов". Чётно или нечётно количество жителей острова? |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 173]
Может ли быть так, что а) σ(n) > 3n; б) σ(n) > 100n?
Найдите наименьшее число вида n = 2αpq, где p и q – некоторые нечётные простые числа, для которого σ(n) = 3n.
Пусть α – действительное положительное число, d – натуральное.
Докажите, что для действительного положительного α и натурального d всегда выполнено равенство [α/d] = [[α]/d].
Число n! разложено в произведение простых чисел:
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 173] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|