Страница: 1 [Всего задач: 5]
Задача
55723
(#М81)
|
|
Сложность: 4+ Классы: 8,9,10
|
Внутри квадрата
A1A2A3A4 взята точка P. Из вершины
A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр
на A3P, из A3 — на A4P, из A4 — на
A1P. Докажите, что все четыре перпендикуляра (или их продолжения)
пересекается в одной точке.
Задача
73617
(#М82)
|
|
Сложность: 4+ Классы: 7,8,9
|
На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.
Задача
73618
(#М83)
|
|
Сложность: 5- Классы: 8,9,10,11
|
Докажите, что числа 1, 2, ..., n ни при каком n > 1 нельзя разбить на два множества так, чтобы произведение чисел одного из них равнялось произведению чисел другого.
Задача
53134
(#М84)
[Задача о бабочке]
|
|
Сложность: 5 Классы: 8,9,10,11
|
Пусть A – основание перпендикуляра, опущенного из центра
данной окружности на данную прямую l. На этой прямой взяты еще две
точки B и C так, что
AB = AC. Через точки B и C проведены две произвольные секущие, из которых одна пересекает окружность в точках P и Q, вторая – в точках M и N. Пусть прямые PM и QN пересекают прямую l в точках R и S. Докажите, что AR = AS.
Задача
73620
(#М85)
|
|
Сложность: 5+ Классы: 8,9,10
|
Для любых натуральных чисел a1, a2, ..., am, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел b1, b2, ..., bm сумма не равна нулю. Докажите это.