Страница: 1
2 >> [Всего задач: 6]
Задача
116493
(#11.1)
|
|
Сложность: 2+ Классы: 10,11
|
Про углы треугольника ABC известно, что
и
. Найдите величину угла C.
Задача
116494
(#11.2)
|
|
Сложность: 2+ Классы: 10,11
|
На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.
Задача
116495
(#11.3)
|
|
Сложность: 3- Классы: 10,11
|
Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству P > 2a.
Задача
116496
(#11.4)
|
|
Сложность: 3 Классы: 10,11
|
Две окружности касаются внешним образом. A – точка касания их общей внешней касательной с одной из окружностей, B – точка той же окружности, диаметрально противоположная точке A. Докажите, что длина касательной, проведённой из точки B ко второй окружности, равна диаметру первой окружности.
Задача
116497
(#11.5)
|
|
Сложность: 3+ Классы: 10,11
|
Известно, что A – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число A?
Страница: 1
2 >> [Всего задач: 6]