Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 5,6,7
|
Два приведённых квадратных трёхчлена имеют общий корень, а дискриминант их суммы равен сумме их дискриминантов.
Докажите, что тогда дискриминант хотя бы одного из этих двух трёхчленов равен нулю.
|
|
Сложность: 4- Классы: 5,6,7
|
Найдите все пары простых чисел p и q, обладающие следующим свойством: 7p + 1 делится на q, а 7q + 1 делится на p.
Дан такой выпуклый четырехугольник ABCD, что AB = BC и AD = DC. Точки K, L и M – середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведенный из точки A к прямой BC, пересекается с перпендикуляром, проведенным из точки C к прямой AD, в точке H. Докажите, что прямые KL и HM перпендикулярны.
Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?
Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?
Страница: 1
2 >> [Всего задач: 6]