Страница: 1
2 3 4 5 >> [Всего задач: 24]
Задача
64618
(#9.1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны 111 различных натуральных чисел, не превосходящих 500.
Могло ли оказаться, что для каждого из этих чисел его последняя цифра совпадает с последней цифрой суммы всех остальных чисел?
Задача
64626
(#10.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Ученик за одну неделю получил 17 оценок (каждая из них – 2, 3, 4 или 5). Среднее арифметическое этих 17 оценок – целое число.
Докажите, что какую-то оценку он получил не более двух раз.
Задача
64634
(#11.1)
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.
Задача
64619
(#9.2)
|
|
Сложность: 3+ Классы: 8,9,10
|
В четырёхугольнике ABCD стороны AD и BC параллельны.
Докажите, что если биссектрисы углов DAC, DBC, ACB и ADB образовали ромб, то AB = CD.
Задача
64627
(#10.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.
Страница: 1
2 3 4 5 >> [Всего задач: 24]