ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Команда из n школьников участвует в игре: на каждого из них надевают шапку одного из k заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить:
  а) при  n = k = 2;
  б) при произвольных фиксированных n и k?

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 79419

Темы:   [ Четырехугольники (экстремальные свойства) ]
[ Сумма длин диагоналей четырехугольника ]
Сложность: 4-
Классы: 10

В выпуклом четырёхугольнике две стороны равны 1, а другие стороны и обе диагонали не больше 1. Какое максимальное значение может принимать периметр четырёхугольника?
Прислать комментарий     Решение


Задача 79423

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Десятичные дроби ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

Прислать комментарий     Решение

Задача 79414

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Считая известной формулу     доказать, что для различных натуральных чисел a1, a2, ..., an справедливо неравенство     Возможно ли равенство для каких-нибудь различных натуральных чисел a1, a2, ..., an?

Прислать комментарий     Решение

Задача 79417

Темы:   [ Целочисленные решетки (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10

На плоскости отмечены точки с целочисленными координатами. Доказать, что найдётся окружность, внутри которой лежат ровно 1982 отмеченные точки.
Прислать комментарий     Решение


Задача 79422

Темы:   [ Теория алгоритмов (прочее) ]
[ Тождественные преобразования ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 4+
Классы: 9,10,11

Петя приобрёл в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может по любым действительным числам x и y вычислить  xy + x + y + 1  и не имеет других операций. Петя хочет написать "программу" для вычисления многочлена  1 + x + x² + ... + x1982.  Под "программой" он понимает такую последовательность многочленов  f1(x), ..., fn(x),  что  f1(x) = x  и для любого  i = 2, ..., n   fi(x) – константа или
fi(x) = fj(xfk(x) + fk(x) + fj(x) + 1,  где  j < ik < i,  причём  fn(x) = 1 + x + ... + x1982.
  а) Помогите Пете написать "программу".
  б) Можно ли написать "программу", если калькулятор имеет только одну операцию  xy + x + y?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .