ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB. Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника. Возможно ли, чтобы одна биссектриса треугольника делила пополам другую биссектрису? Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.
В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий
отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы
один круг. Доказать, что N Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.
Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке