ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи 2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0). |
Страница: 1 [Всего задач: 4]
Докажите, что при любом a имеет место неравенство: 3(1 + a² + a4) ≥ (1 + a + a²)².
В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.
Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?
Кафельная плитка имеет форму прямоугольного треугольника с катетами 1 дм и 2 дм. Можно ли из 20 таких плиток сложить квадрат?
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке