ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что не существует никакой (даже разрывной) функции  y = f(x),  для которой  f(f(x)) = x² – 1996  при всех x.

Вниз   Решение


Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из  4n – 2  диагоналей равнялась 1. Можно ли это сделать при
  а)  n = 55?
  б)  n = 1992?

ВверхВниз   Решение


На совместный симпозиум лжецов (всегда лгут) и правдолюбов (всегда говорят правду) собрались 12 участников, среди которых не все лжецы и не все правдолюбы. Каждые два участника либо знакомы, либо незнакомы друг с другом. Каждый ответил «да» или «нет» на вопрос «Знакомы ли вы?» про каждого из остальных. Какое наименьшее количество ответов «да» могло быть получено?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116255  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 8,9

В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну.

Прислать комментарий     Решение

Задача 116256  (#2)

Темы:   [ Комбинаторика (прочее) ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань.

Прислать комментарий     Решение

Задача 116257  (#3)

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9

Найдите все такие натуральные числа a и b, что  (a + b²)(b + a²)  является целой степенью двойки.

Прислать комментарий     Решение

Задача 116258  (#4)

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

Прислать комментарий     Решение

Задача 116259  (#5)

Тема:   [ Средние величины ]
Сложность: 4
Классы: 8,9

Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
  а) это можно сделать, если  N + 1  – квадрат целого числа.
  б) если это можно сделать, то  N + 1  – квадрат целого числа.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .