|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Требуется подсчитать количество последовательностей длины N, состоящих из 0 и 1, в которых никакие две единицы не стоят рядом. Входные данные Во входном файле записано целое число N (1 ≤ N ≤ 100). Выходные данные В выходной файл вывести количество искомых последовательностей. Пример входного файла 5 Пример выходного файла 13 В треугольнике ABC O – центр описанной окружности, I – центр вписанной. Прямая, проходящая через I и перпендикулярная OI, пересекает AB в точке X, а внешнюю биссектрису угла C – в точке Y. В каком отношении I делит отрезок XY? |
Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 6702]
С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.
Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.
Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.
Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.
Сторона треугольника равна 2
Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 6702] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|