Страница: << 1 2 [Всего задач: 8]
Задача
109805
(#04.5.10.6)
|
|
Сложность: 5 Классы: 9,10,11
|
В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.
Задача
109806
(#04.5.10.7)
|
|
Сложность: 5+ Классы: 8,9,10
|
Треугольник T содержится внутри выпуклого центрально-симметричного
многоугольника M .
Треугольник T' получается из треугольника T
центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T .
Докажите, что хотя бы одна из вершин треугольника T' лежит
внутри или на границе многоугольника M .
Задача
109807
(#04.5.10.8)
|
|
Сложность: 5- Классы: 9,10,11
|
Существует ли такое натуральное число n > 101000, не делящееся на 10, что в его десятичной записи можно
переставить две различные ненулевые цифры так, чтобы множество его простых
делителей не изменилось?
Страница: << 1 2 [Всего задач: 8]