ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри выпуклого многоугольника расположены две точки. Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса. Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.
Окружности с центрами O1 и O2 пересекаются
в точках A и B . Известно, что |
Страница: << 1 2 3 [Всего задач: 15]
В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°.
Найдите все простые числа p, q и r, для которых выполняется равенство: p + q = (p – q)r.
Найдите наибольшее натуральное n, при котором n200 < 5300.
В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC, AB = BC.
Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?
Страница: << 1 2 3 [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке