ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подисточники:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Последовательность чисел a1, a2,..., an... образуется следующим образом:
a1 = a2 = 1; an =
Доказать, что все числа в последовательности — целые.
На доске выписаны числа 1, 2, ..., 100. На каждом этапе одновременно стираются все числа, не имеющие среди нестёртых чисел делителей, кроме себя самого. Например, на первом этапе стирается только число 1. Какие числа будут стёрты на последнем этапе? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]
Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)
Существуют ли в пространстве 4 точки A,B,C,D такие, что AB=CD=8 см; AC=BD=10 см; AB+BC=13 см?
Найти все решения системы уравнений
удовлетворяющие условиям 0
Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
30 команд участвуют в розыгрыше первенства по футболу.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке