ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116834  (#1)

Темы:   [ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Дана бесконечная последовательность чисел  a1, a2, a3, ...  Известно, что для любого номера k можно указать такое натуральное число t, что
ak = ak+t = ak+2t = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное T, что  ak = ak+T  при любом натуральном k?

Прислать комментарий     Решение

Задача 116835  (#2)

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ Принцип Дирихле (углы и длины) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10,11

Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?

Прислать комментарий     Решение

Задача 116831  (#3)

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9

Автор: Брагин В.

Машина ездит по кольцевой трассе по часовой стрелке. В полдень в две разных точки трассы встали два наблюдателя. К какому-то моменту машина проехала возле каждого наблюдателя не менее 30 раз. Первый наблюдатель заметил, что машина проезжала каждый следующий круг ровно на секунду быстрее, чем предыдущий. Второй заметил, что машина проезжала каждый следующий круг ровно на секунду медленнее, чем предыдущий. Докажите, что прошло не менее полутора часов.

Прислать комментарий     Решение

Задача 116837  (#4)

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Неравенства с углами ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 10,11

На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.

Прислать комментарий     Решение

Задача 116833  (#5)

Темы:   [ Теория игр (прочее) ]
[ Десятичная система счисления ]
Сложность: 5-
Классы: 8,9

Автор: Сафин С.

Петя и Вася играют в следующую игру. Петя загадывает натуральное число x с суммой цифр 2012. За один ход Вася выбирает любое натуральное число a и узнаёт у Пети сумму цифр числа  |x – a|.  Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить x?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .