ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Тысяча точек является вершинами выпуклого тысячеугольника, внутри которого расположено ещё пятьсот точек так, что никакие три из пятисот не лежат на одной прямой. Данный тысячеугольник разрезан на треугольники таким образом, что все указанные 1500 точек являются вершинами треугольников и эти треугольники не имеют никаких других вершин. Сколько получится треугольников при таком разрезании?

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 141]      



Задача 60959  (#06.036)

Темы:   [ Методы решения задач с параметром ]
[ Квадратные неравенства и системы неравенств ]
[ Неравенства. Метод интервалов ]
Сложность: 3+
Классы: 8,9,10

Найдите все значения x, удовлетворяющие неравенству  (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4aa² < 0  хотя бы при одном значении a из отрезка  [–1, 2].

Прислать комментарий     Решение

Задача 60960  (#06.037)

 [Деление многочленов с остатком]
Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 8,9,10,11

Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно. Докажите, что существуют такие многочлены T(x) и R(x), что
P(x) = Q(x)T(x) + R(x)  и  deg R(x) < degQ(x);  при этом T(x) и R(x) определяются однозначно.

Прислать комментарий     Решение

Задача 60961  (#06.038)

 [Теорема Безу]
Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что остаток от деления многочлена P(x) на  x – c  равен P(c).

Прислать комментарий     Решение

Задача 60962  (#06.039)

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10,11

Докажите, что многочлен степени n имеет не более чем n корней.

Прислать комментарий     Решение

Задача 60963  (#06.040)

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Производная и касательная ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 10,11

Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 141]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .