|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Кружки, факультативы, спецкурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна (n - 2) . 180o. б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2. Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями. Докажите, что площадь S треугольника равна abc/4R. |
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 644]
Можно ли семь телефонов соединить проводами так, чтобы каждый телефон был соединён ровно с тремя?
Можно ли расположить на плоскости
Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать?
Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.
Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 644] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|