|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм. Докажите неравенство для положительных значений переменных: a²b² + b²c² + a²c² ≥ abc(a + b + c). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]
Докажите неравенство
Докажите, что x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.
Докажите неравенство для положительных значений переменных:
Докажите, что x4 + y4 + 8 ≥ 8xy при любых x и y.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|