Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Известно, что каждое из целых чисел a, b, c, d делится на  ab – cd.  Докажите, что  ab – cd  равно либо 1, либо –1.

Вниз   Решение


Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.

ВверхВниз   Решение


Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.)

ВверхВниз   Решение


Дан треугольник ABC. На продолжении стороны AC за точку A отложен отрезок  AD = AB,  а за точку C – отрезок  CE = CB.
Найдите углы треугольника DBE, зная углы треугольника ABC.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 7526]      



Задача 35506

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 7,8

Можно ли таблицу  n×n  заполнить числами –1, 0, 1 так, чтобы суммы во всех строках, во всех столбцах и на главных диагоналях были различны?

Прислать комментарий     Решение

Задача 35526

Темы:   [ Задачи на проценты и отношения ]
[ Классические неравенства (прочее) ]
Сложность: 2+
Классы: 7,8,9

Под какой процент выгоднее положить деньги в банк на год: 6% в год или 0,5% в месяц?

Прислать комментарий     Решение

Задача 35528

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 7,8

Как разрезать треугольник на несколько треугольников так, чтобы никакие два из треугольников разбиения не имели целой общей стороны?
Прислать комментарий     Решение


Задача 35530

Темы:   [ Свойства симметрий и осей симметрии ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Может ли бильярдный шар, отразившись поочередно от двух соседних сторон прямоугольного бильярдного стола, прийти в исходную точку?

Прислать комментарий     Решение

Задача 35539

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 7,8,9

Известно, что каждое из целых чисел a, b, c, d делится на  ab – cd.  Докажите, что  ab – cd  равно либо 1, либо –1.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .