Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.

Вниз   Решение


Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
  a1 – 3a2 + 2a3 ≥ 0,
  a2 – 3a3 + 2a4 ≥ 0,
  a3 – 3a4 + 2a5 ≥ 0,
    ...,
  a99 – 3a100 + 2a1 ≥ 0,
  a100 – 3a1 + 2a2 ≥ 0.
Доказать, что все числа ai равны между собой.

ВверхВниз   Решение


Прямая, пересекающая основание равнобедренного треугольника и проходящая через вершину, разбивает этот треугольник на два треугольника.
Докажите, что радиусы окружностей, описанных около этих треугольников, равны.

ВверхВниз   Решение


На стороне AB треугольника ABC взяты точки M и N, причём AM : MN : NB = 2 : 2 : 1, а на стороне AC — точка K, причём AK : KC = 1 : 2. Найдите площадь треугольника MNK, если площадь треугольника ABC равна 1.

Вверх   Решение

Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 644]      



Задача 32857

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 7

Что больше:
  а)  1/101 + 1/102 + ... + 1/199 + 1/200  или 1/2 ?
  б) 1/2·3/4·5/6·...·97/98·99/100  или 1/10 ?

Прислать комментарий     Решение

Задача 77894

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

Прислать комментарий     Решение

Задача 88295

Тема:   [ Классические неравенства ]
Сложность: 4-
Классы: 7,8,9,10

Укажите какое-нибудь целое положительное n, при котором
  а)  1,001n > 10;
  б)  0,999n < 0,1.

Прислать комментарий     Решение

Задача 88308

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 7,8,9

В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

Прислать комментарий     Решение

Задача 88335

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?

Прислать комментарий     Решение

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .