|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b). |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 173]
Может ли быть так, что а) σ(n) > 3n; б) σ(n) > 100n?
Найдите наименьшее число вида n = 2αpq, где p и q – некоторые нечётные простые числа, для которого σ(n) = 3n.
Пусть α – действительное положительное число, d – натуральное.
Докажите, что для действительного положительного α и натурального d всегда выполнено равенство [α/d] = [[α]/d].
Число n! разложено в произведение простых чисел:
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 173] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|