Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг радиусом $ {\frac{1}{4}}$, покрывающий всю ломаную.

Вниз   Решение


Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

ВверхВниз   Решение


Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

Вверх   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 391]      



Задача 102796

 [Круги в квадрате]
Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Принцип Дирихле (углы и длины) ]
[ Окружности (прочее) ]
Сложность: 3+
Классы: 7,8,9

Внутри квадрата со стороной 1 расположены несколько кругов, сумма радиусов которых равна 0,51. Доказать, что найдется прямая, которая параллельна одной из сторон квадрата и пересекает, по крайней мере, 2 круга.
Прислать комментарий     Решение


Задача 102813

Темы:   [ Замощения костями домино и плитками ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Режем прямоугольник. Клетчатый прямоугольник разрезали на прямоугольники 1 х 2 (доминошки) так, что любая прямая, идущая по линиям сетки, рассекает кратное четырем число доминошек. Докажите, что длина одной из сторон делится на 4.
Прислать комментарий     Решение


Задача 102827

Темы:   [ Построения ]
[ Касающиеся окружности ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 7,8,9

Три попарно касающиеся окружности. Из трех данных точек как из центров постройте три попарно касающиеся окружности.
Прислать комментарий     Решение


Задача 102864

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 7,8

Какие буквы соответствуют цифрам частного? Восстановите все цифры, если с = 7.


Прислать комментарий     Решение

Задача 88304

Темы:   [ Взвешивания ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8

Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .