|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Из двухсот чисел: 1, 2, 3, ..., 199, 200 выбрали одно число, меньшее 16, и ещё 99 чисел. По кругу расставлены 2005 натуральных чисел. |
Страница: 1 2 3 >> [Всего задач: 12]
Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.
Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?
Может ли разность четвёртых степеней простых чисел быть простым числом?
Решите уравнение 1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².
На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что EF || AC и AF = AD. Докажите, что AВ = ВЕ.
Страница: 1 2 3 >> [Всего задач: 12] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|