ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена f и g и заменить их на такие два приведённых многочлена 37-й степени f1 и g1, что f + g = f1 + g1 или fg = f1g1. Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]
Пусть E и F — середины сторон AB и CD четырехугольника
ABCD, K, L, M и N — середины отрезков AF, CE,
BF и DE. Докажите, что KLMN — параллелограмм.
Дано n попарно не сонаправленных векторов (n
Даны четыре попарно непараллельных вектора, сумма которых равна
нулю. Докажите, что из них можно составить:
а) невыпуклый четырехугольник; б) самопересекающуюся
четырехзвенную ломаную.
Даны четыре попарно непараллельных вектора a, b, c и d, сумма которых равна нулю. Докажите, что
|a| + |b| + |c| + |d| > |a + b| + |a + c| + |a + d|.
В выпуклом пятиугольнике ABCDE сторона BC параллельна
диагонали AD,
CD || BE,
DE || AC и
AE || BD.
Докажите, что
AB || CE.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке