|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Петя и Вася играют в игру на клетчатой доске n×n (где n > 1). Изначально вся доска белая, за исключением угловой клетки – она чёрная, и в ней стоит ладья. Игроки ходят по очереди. Каждым ходом игрок передвигает ладью по горизонтали или вертикали, при этом все клетки, через которые ладья перемещается (включая ту, в которую она попадает), перекрашиваются в чёрный цвет. Ладья не должна передвигаться через чёрные клетки или останавливаться на них. Проигрывает тот, кто не может сделать ход; первым ходит Петя. Кто выиграет при правильной игре? Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 7526]
Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники.
В турнире по волейболу, прошедшем в один круг, 20% всех команд не выиграли ни одной игры. Сколько было команд?
Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)
Сколько осей симметрии может быть у треугольника?
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|