ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 6702]      



Задача 54763

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2+
Классы: 8,9

Один из двух смежных углов в 3 раза меньше другого. Найдите эти углы.

Прислать комментарий     Решение

Задача 54766

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2+
Классы: 8,9

Точка M лежит внутри угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен модулю полуразности углов AOM и BOM.

Прислать комментарий     Решение

Задача 55543

Темы:   [ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
Сложность: 2+
Классы: 8,9

Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AC1 = BA1 = CB1.  Докажите, что треугольник ABC правильный.

Прислать комментарий     Решение

Задача 55573

Темы:   [ Необычные построения (прочее) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 2+
Классы: 7,8,9

Лист бумаги согнут пополам. Докажите, что линия сгиба — прямая.

Прислать комментарий     Решение


Задача 55719

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .