|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Через точку P, лежащую на медиане CC1 треугольника ABC, проведены прямые AA1 и BB1 (точки A1 и B1 лежат на сторонах BC и CA соответственно). Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC. Пусть A1B1C1 — подерный треугольник точки P относительно треугольника ABC. Докажите, что B1C1 = BC . AP/2R, где R — радиус описанной окружности треугольника ABC. В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°. |
Страница: 1 2 3 >> [Всего задач: 13]
Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма?
Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.
Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.
Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
Страница: 1 2 3 >> [Всего задач: 13] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|