|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Каждый из людей, когда-либо живших на земле, сделал определённое число рукопожатий. Остап Бендер в интервью шахматному журналу о сеансе одновременной игры в Васюках сообщил, что в одной из партий у него осталось фигур в 3 раза меньше, чем у соперника, и в 6 раз меньше, чем свободных клеток на доске, а в другой партии фигур у него осталось в 5 раз меньше, чем у соперника, и в 10 раз меньше, чем свободных клеток на доске, и все-таки он сумел выиграть обе партии. Можно ли верить его рассказу? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 85]
Дано N точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из k цветов. Докажите, что если N > [k!e], то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.
Определим последовательности чисел (xn) и
(dn) условиями x1 = 1, xn+1 = [
Докажите, что равенство
Докажите, что если (m, 10) = 1, то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?
Как связаны между собой десятичные представления чисел
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 85] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|