ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два мудреца играют в следующую игру. Выписаны числа 0, 1, 2,..., 1024. Первый мудрец зачёркивает 512 чисел (по своему выбору), второй зачёркивает 256 из оставшихся, затем снова первый зачёркивает 128 чисел и т.д. На десятом шаге второй мудрец зачёркивает одно число; остаются два числа. После этого второй мудрец платит первому разницу между этими числами. Как выгоднее играть первому мудрецу? Как второму? Сколько уплатит второй мудрец первому, если оба будут играть наилучшим образом? (Ср. с задачей 78710 и с задачей 78716.)

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 116097  (#28.022)

Темы:   [ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.
Прислать комментарий     Решение


Задача 58341  (#28.023)

Темы:   [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5-
Классы: 9,10,11

Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках A и B.
Прислать комментарий     Решение


Задача 58342  (#28.024)

Тема:   [ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10

Докажите, что инверсия с центром в вершине A равнобедренного треугольника ABC (AB = AC) и степенью AB2 переводит основание BC треугольника в дугу BC описанной окружности.
Прислать комментарий     Решение


Задача 58343  (#28.025)

Темы:   [ Инверсия помогает решить задачу ]
[ Окружности, вписанные в сегмент ]
[ Касающиеся окружности ]
[ Радикальная ось ]
[ Признаки и свойства касательной ]
Сложность: 5
Классы: 9,10,11

В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).
Прислать комментарий     Решение


Задача 58344  (#28.026)

Темы:   [ Инверсия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
Сложность: 5
Классы: 9,10,11

Никакие три из четырех точек A, B, C, D не лежат на одной прямой. Докажите, что угол между описанными окружностями треугольников ABC и ABD равен углу между описанными окружностями треугольников ACD и BCD.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .