ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На острове живут три племени: рыцари, которые всегда говорят правду, лжецы, которые всегда лгут, и хитрецы, которые иногда говорят правду, а иногда лгут. За круглым столом сидят 100 представителей этих племен. Каждый из сидящих за столом произнес две фразы: 1) “Слева от меня сидит лжец”; 2) “Справа от меня сидит хитрец”. Сколько за столом рыцарей и сколько лжецов, если половина присутствующих – хитрецы?

Вниз   Решение


Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110132  (#03.4.9.1)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

Прислать комментарий     Решение

Задача 110140  (#03.4.9.2)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9,10

По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.

Прислать комментарий     Решение

Задача 108123  (#03.4.9.3)

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

Прислать комментарий     Решение

Задача 110134  (#03.4.9.4)

Темы:   [ Признаки делимости на 11 ]
[ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 8,9,10

Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

Прислать комментарий     Решение

Задача 108124  (#03.4.9.5)

Темы:   [ Углы между биссектрисами ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4+
Классы: 8,9

Автор: Храмцов Д.

Пусть I – точка пересечения биссектрис треугольника ABC . Обозначим через A' , B' , C' точки, симметричные точке I относительно сторон треугольника ABC . Докажите, что если окружность, описанная около треугольника A'B'C' , проходит через вершину B , то ABC = 60o .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .