Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]
Задача
66012
(#9.1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?
Задача
66018
(#10.1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?
Задача
66024
(#11.1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?
Задача
66147
(#9.1)
|
|
Сложность: 3+ Классы: 8,9,10
|
В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)
Задача
66155
(#10.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые l1 и l2. Известно, что отрезки, высекаемые графиками на l1, равны, и отрезки, высекаемые графиками на l2, также равны. Докажите, что графики трёхчленов совпадают.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]