Страница: 1
2 >> [Всего задач: 8]
Задача
66162
(#11.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Число x таково, что обе суммы S = sin 64x + sin 65x и C = cos 64x + cos 65x – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.
Задача
66156
(#11.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.
Задача
66158
(#11.3)
|
|
Сложность: 5- Классы: 9,10,11
|
На доске выписаны в ряд n положительных чисел a1, a2, ..., an. Вася хочет выписать под каждым числом ai число bi ≥ ai так, чтобы для каждых двух из чисел b1, b2, ..., bn отношение одного из них к другому было целым. Докажите, что Вася может выписать требуемые числа так, чтобы выполнялось неравенство b1b2...bn ≤ 2(n–1)/2a1a2...an.
Задача
66165
(#11.4)
|
|
Сложность: 5 Классы: 9,10,11
|
У фокусника и помощника есть колода с картами; одна сторона ("рубашка") у всех карт одинакова, а другая окрашена в один из 2017 цветов (в колоде по 1000000 карт каждого цвета). Фокусник и помощник собираются показать следующий фокус. Фокусник выходит из зала, а зрители выкладывают на стол в ряд n > 1 карт рубашками вниз. Помощник смотрит на эти карты, а затем все, кроме одной, переворачивает рубашкой вверх, не меняя их порядка. Затем входит фокусник, смотрит на стол, указывает на одну из закрытых карт и называет её цвет. При каком наименьшем k фокусник может заранее договориться с помощником так, чтобы фокус гарантированно удался?
Задача
66160
(#11.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть P(x) – многочлен степени n ≥ 2 с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа также являются длинами сторон некоторого остроугольного треугольника.
Страница: 1
2 >> [Всего задач: 8]