Страница: 1
2 3 >> [Всего задач: 11]
Два параллелограмма расположены так,
как показано на рисунке. Докажите, что диагональ одного
параллелограмма проходит через точку пересечения диагоналей другого.
Биссектриса угла C и внешнего угла
A трапеции ABCD с основаниями BC и AD пересекаются в точке
M, а биссектриса угла B и внешнего угла D – в точке N.
Докажите, что середина отрезка MN равноудалена от прямых AB и
CD.
|
|
Сложность: 3 Классы: 9,10,11
|
В прямоугольном треугольнике ABC
с прямым углом C провели биссектрисы AK и BN, на которые
опустили перпендикуляры CD и CE из вершины прямого угла.
Докажите, что длина отрезка DE равна радиусу вписанной окружности.
|
|
Сложность: 3 Классы: 9,10,11
|
Диагонали трапеции
ABCD перпендикулярны. Точка M – середина боковой стороны AB,
точка N симметрична центру описанной окружности треугольника ABD
относительно прямой AD. Докажите, что ∠CMN = 90°.
На продолжениях сторон
CA и AB треугольника ABC за точки A и B соответственно
отложены отрезки AE = BC и BF = AC. Окружность касается отрезка
BF в точке N, стороны BC и продолжения стороны AC за точку
C. Точка M – середина отрезка EF. Докажите, что прямая MN
параллельна биссектрисе угла A.
Страница: 1
2 3 >> [Всего задач: 11]