Страница: 1
2 3 >> [Всего задач: 11]
Задача
74200
(#М665)
|
|
Сложность: 4 |
Световое табло состоит из нескольких ламп, каждая из которых может находиться в двух состояниях (гореть или не гореть). На пульте несколько кнопок, при нажатии каждой из которых одновременно меняется состояние некоторого набора ламп (для каждой кнопки – своего). Вначале лампы не горят.
а) Докажите, что число различных узоров, которые можно получить на табло, – степень двойки.
б) Сколько различных узоров можно получить на табло, состоящем из mn лампочек, расположенных в форме прямоугольника размером m×n, если кнопками можно переключить как любой горизонтальный, так и любой вертикальный ряд ламп?
Задача
73628
(#М678)
|
|
Сложность: 3+ Классы: 7,8,9
|
2m-значное число назовём справедливым, если его чётные разряды содержат столько же чётных цифр, сколько и нечётные. Докажите, что в любом (2m+1)-значном числе можно вычеркнуть одну из цифр так, чтобы полученное 2m-значное число было справедливым. Пример для числа 12345 показан на рисунке.
Задача
74220
(#М685)
|
|
Сложность: 4+ Классы: 9,10,11
|
Два подмножества множества натуральных чисел называют конгруэнтными, если одно получается из другого сдвигом на целое число.
(Например, множества чётных и нечётных чисел конгруэнтны.) Можно ли разбить множество натуральных чисел на бесконечное число
(не пересекающих друг друга) бесконечных конгруэнтных подмножеств?
Задача
79391
(#М686)
|
|
Сложность: 4- Классы: 8,9,10
|
Дано число
x, большее 1. Обязательно ли имеет место равенство
[
] = [
]?
Задача
79396
(#М688)
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа a1, a2, ..., an таковы, что каждое не превышает своего номера (ak ≤ k) и сумма всех чисел – чётное число.
Доказать, что одна из сумм a1 ± a2 ± ... ± an равна нулю.
Страница: 1
2 3 >> [Всего задач: 11]