ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Золотоискатель Джек добыл 9 кг золотого песка. Сможет ли он за три взвешивания отмерить 2 кг песка с помощью чашечных весов: а) с двумя гирями — 200 г и 50 г; б) с одной гирей 200 г? При подстановке в многочлены Чебышёва (см. задачу 61099) числа x = cos α получаются значения
Сфера касается боковых граней четырёхугольной пирамиды
SABCD в точках, лежащих на рёбрах AB , BC , CD , DA .
Известно, что высота пирамиды равна 2 На сторонах выпуклого n-угольника внешним образом построены правильные
n-угольники. Докажите, что их центры образуют правильный n-угольник тогда и
только тогда, когда исходный n-угольник аффинно правильный.
Внутри параллелограмма ABCD взята точка K так, что треугольник CKD равносторонний. Известно, что расстояния от точки K до прямых AD , AB и BC равны соответственно 3, 6 и 5. Найдите периметр параллелограмма. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 83]
Известно, что sin α = 3/5. Докажите, что sin 25α имеет вид n/525, где n – целое, не делящееся на 5.
Последовательность многочленов P0(x) = 1, P1(x) = x, P2(x) = x² – 1, ... задается условием
Pn+1(x) = xPn(x) – Pn–1(x).
Докажите равенство
Известно, что z + z–1 = 2 cos α.
При подстановке в многочлены Чебышёва (см. задачу 61099) числа x = cos α получаются значения
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 83]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке