Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.

Вниз   Решение


Решите систему

$\displaystyle \left\{\vphantom{
\begin{array}l
x^6-x^5+x^4-x^3+5x^2=5,\\  x^6-2x^5+3x^4-4x^3+2x=0.
\end{array}
}\right.$$\displaystyle \begin{array}l
x^6-x^5+x^4-x^3+5x^2=5,\\  x^6-2x^5+3x^4-4x^3+2x=0.
\end{array}$


ВверхВниз   Решение


Найдите наибольший общий делитель многочленов P(x), Q(x) и представьте его в виде  P(x)U(x) + Q(x)V(x):
  а)  P(x) = x4 + x³ – 3x² – 4x – 1,  Q(x) = x³ + x² – x – 1;
  б)  P(x) = 3x4 – 5x³ + 4x² – 2x + 1,  Q(x) = 3x³ – 2x² + x – 1.

ВверхВниз   Решение


Пусть точки A*, B*, C*, D* являются образами точек A, B, C, D при инверсии. Докажите, что:
а) $ {\frac{AC}{AD}}$ : $ {\frac{BC}{BD}}$ = $ {\frac{A^*C^*}{A^*D^*}}$ : $ {\frac{B^*C^*}{B^*D^*}}$;
б) $ \angle$(DA, AC) - $ \angle$(DB, BC) = $ \angle$(D*B*, B*C*) - $ \angle$(D*A*, A*C*).

ВверхВниз   Решение


Докажите, что многочлен  P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1)  делится на  Q(x) = (x – 1)(x2 – 1)...(xm – 1).

ВверхВниз   Решение


Автор: Бона М.

В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.

ВверхВниз   Решение


Докажите, что точки, соответствующие комплексным числам a, b, c, лежат на одной прямой тогда и только тогда, когда число $ {\frac{a-b}{a-c}}$, называемое простым отношением трех комплексных чисел, вещественно.
б) Докажите, что точки, соответствующие комплексным числам a, b, c, d, лежат на одной окружности (или на одной прямой) тогда и только тогда, когда число $ {\frac{a-c}{a-d}}$ : $ {\frac{b-c}{b-d}}$, называемое двойным отношением четырех комплексных чисел, вещественно.

ВверхВниз   Решение


В ряд выписаны несколько натуральных чисел с суммой 2019. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 40. Какое наибольшее количество чисел могло быть выписано?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 61458  (#11.031)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 2
Классы: 8,9,10,11

Определение. Последовательность чисел a0, a1,...,an,..., которая удовлетворяет с заданными p и q соотношению

an+2=pan+1+qan (n=0,1,2,...) (11.2)

называется линейной рекуррентной (возвратной) последовательностью второго порядка.
Уравнение
x 2-px-q=0 (11.3)

называется характеристическим уравнением последовательности (a n).
Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно.

Прислать комментарий     Решение

Задача 61459  (#11.032)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 2+
Классы: 9,10,11

Докажите, что геометрическая прогрессия {an} = bx0n удовлетворяет соотношению (11.2 ) тогда и только тогда, когда x0 -- корень характеристического уравнения (11.3 ) последовательности {an}.
Прислать комментарий     Решение


Задача 61460  (#11.033)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 3
Классы: 9,10,11

Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = c1x1n + c2x2n        (n = 0, 1, 2,...).


Прислать комментарий     Решение

Задача 61461  (#11.034)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 3
Классы: 9,10,11

Пусть характеристическое уравнение (11.3) последовательности {an} имеет корень x0 кратности 2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = (c1 + c2n)x0n        (n = 0, 1, 2,...).


Прислать комментарий     Решение

Задача 61462  (#11.035)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Найдите формулу n-го члена для последовательностей, заданных условиями ( n $ \geqslant$ 0):

a) a0 = 0, a1 = 1, an + 2 = 5an + 1 - 6an;
б) a0 = 1, a1 = 1, an + 2 = 3an + 1 - 2an;
в) a0 = 1, a1 = 1, an + 2 = an + 1 + an;
г) a0 = 1, a1 = 2, an + 2 = 2an + 1 - an;
д) a0 = 0, a1 = 1, an + 2 = 2an + 1 + an.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .