|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников? Положительные рациональные числа a и b записаны в виде десятичных дробей, у каждой из которых минимальный период состоит из 30 цифр. У десятичной записи числа a – b длина минимального периода равна 15. При каком наименьшем натуральном k длина минимального периода десятичной записи числа a + kb может также оказаться равной 15? |
Страница: 1 2 3 >> [Всего задач: 12]
|x + 2000| < |x - 2001|.
Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?
1 – x1x2 = 0, 1 – x2x3 = 0, ... 1 – x2000x2001 = 0, 1 – x2001x1 = 0.
В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Страница: 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|