ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Петя прибавил к натуральному числу $N$ натуральное число $M$ и заметил, что сумма цифр у результата та же, что и у $N$. Тогда он снова прибавил $M$ к результату, потом – ещё раз, и т. д. Обязательно ли он когда-нибудь снова получит число с той же суммой цифр, что и у $N$?

Вниз   Решение


Найдите корень уравнения 24-2x = 64 .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 78211

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 9,10

Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам.
Прислать комментарий     Решение


Задача 78214

Темы:   [ Обыкновенные дроби ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3
Классы: 8,9,10

Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

Прислать комментарий     Решение

Задача 78218

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

Прислать комментарий     Решение

Задача 78224

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

В каком-то году некоторое число ни в одном месяце не было воскресеньем. Определить это число.

Прислать комментарий     Решение

Задача 78206

Темы:   [ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .