Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
  а) Докажите, что при  n = 98  первый всегда может выиграть.
  б) При каком наибольшем n первый всегда может выиграть?

Вниз   Решение


Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.

ВверхВниз   Решение


Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите диагональ AC, если BD = 2, AB = 1, $ \angle$ABD : $ \angle$DBC = 4 : 3.

ВверхВниз   Решение


Автор: Храмцов Д.

Дано натуральное число  n ≥ 2.  Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

ВверхВниз   Решение


Сторона AD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите сторону BC, если AD = 6, BD = 3$ \sqrt{3}$, $ \angle$BAC : $ \angle$CAD = 1 : 3.

ВверхВниз   Решение


Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали BD и пересекает сторону CD в точке K. Найдите отношение KD : CD, если BD = 2AC.

ВверхВниз   Решение


Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

ВверхВниз   Решение


С помощью циркуля и линейки параллельно данной прямой проведите прямую, на которой две данные окружности высекали бы хорды, сумма (или разность) длин которых имела бы заданную величину a.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78477  (#1)

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.
Прислать комментарий     Решение


Задача 78481  (#2)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 10,11

Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.
Прислать комментарий     Решение


Задача 78482  (#3)

Тема:   [ Подсчет двумя способами ]
Сложность: 4-
Классы: 10,11

Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?
Прислать комментарий     Решение


Задача 78483  (#4)

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10

a, b, c – такие три числа, что  abc > 0  и  a + b + c > 0.  Доказать, что  an + bn + cn > 0  при любом натуральном n.

Прислать комментарий     Решение

Задача 78484  (#5)

Тема:   [ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 10

Дан произвольный треугольник ABC. Найти множество всех таких точек M, что перпендикуляры к прямым AM, BM, CM, проведённые из точек A, B, C (соответственно), пересекаются в одной точке.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .