ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите неравенство для положительных значений переменных:   2(a³ + b³ + c³) ≥ ab(a + b) + ac(a + c) + bc(b + c).

Вниз   Решение


Решите систему уравнений:
    1 – x1x2 = 0,
    1 – x2x3 = 0,
    ...
    1 – x2000x2001 = 0,
    1 – x2001x1 = 0.

ВверхВниз   Решение


То же, если f(0) = 13, f(1) = 17, f(2) = 20, f(3) = 30, f(2n) = 43 f(n) + 57 f(n + 1), f(2n + 1) = 91 f(n) + 179 f(n + 1) при n≥2.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 7526]      



Задача 35614

Темы:   [ Уравнение плоскости ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Прислать комментарий     Решение


Задача 35618

Темы:   [ Правильная пирамида ]
[ Ортогональная проекция (прочее) ]
Сложность: 2+
Классы: 10,11

Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники.
Может ли угол грани при вершине пирамиды равняться 100°?

Прислать комментарий     Решение

Задача 35623

Темы:   [ Турниры и турнирные таблицы ]
[ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 7,8

В турнире по волейболу, прошедшем в один круг, 20% всех команд не выиграли ни одной игры. Сколько было команд?

Прислать комментарий     Решение

Задача 35628

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 9,10

Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

Прислать комментарий     Решение

Задача 35633

Темы:   [ Свойства симметрий и осей симметрии ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Сколько осей симметрии может быть у треугольника?

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .