|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите неравенство для положительных значений переменных: 2(a³ + b³ + c³) ≥ ab(a + b) + ac(a + c) + bc(b + c). Решите систему уравнений: 1 – x1x2 = 0, 1 – x2x3 = 0, ... 1 – x2000x2001 = 0, 1 – x2001x1 = 0. То же, если f(0) = 13, f(1) = 17, f(2) = 20, f(3) = 30, f(2n) = 43 f(n) + 57 f(n + 1), f(2n + 1) = 91 f(n) + 179 f(n + 1) при n≥2. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 7526]
Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники.
В турнире по волейболу, прошедшем в один круг, 20% всех команд не выиграли ни одной игры. Сколько было команд?
Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)
Сколько осей симметрии может быть у треугольника?
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|