|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан прямоугольный треугольник (см. рисунок). Приложите к нему какой-нибудь треугольник (эти треугольники должны иметь общую сторону, но не должны перекрываться даже частично) так, чтобы получился треугольник с двумя равными сторонами.
В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки. Числа a и b таковы, что первое уравнение системы
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
По кругу расставлены 2005 натуральных чисел.
Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|