Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Может ли быть верным равенство

К х О х Т = У х Ч х Ё х Н х Ы х Й
если в него вместо букв подставить цифры от 1 до 9? Разным буквам соответствуют разные цифры.

Вниз   Решение


Докажите, что прямые AB и KM перпендикулярны тогда и только тогда, когда  AK² – BK² = AM² – BM².

ВверхВниз   Решение


Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?

ВверхВниз   Решение


Последовательность (an) такова, что  an = n²  при  1 ≤ n ≤ 5  и при всех натуральных n выполнено равенство  an+5 + an+1 = an+4 + an.  Найдите a2015.

ВверхВниз   Решение


Укажите какое-нибудь целое положительное n, при котором
  а)  1,001n > 10;
  б)  0,999n < 0,1.

Вверх   Решение

Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 559]      



Задача 30778  (#029)

Темы:   [ Четность перестановки ]
[ Разложение в произведение транспозиций и циклов ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа.
Может ли после 1989 таких операций порядок чисел оказаться исходным?

Прислать комментарий     Решение

Задача 30779  (#030)

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 8,9

Дана некоторая тройка чисел. С любыми двумя из них разрешается проделывать следующее: если эти числа равны a и b, то их можно заменить на     и   .  Можно ли с помощью таких операций получить тройку     из тройки  

Прислать комментарий     Решение

Задача 30780  (#002)

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

Прислать комментарий     Решение

Задача 30781  (#003)

Темы:   [ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8

Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.

Прислать комментарий     Решение

Задача 30782  (#004)

Темы:   [ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Верно ли, что два графа изоморфны, если
  а) у них по 10 вершин, степень каждой из которых равна 9?
  б) у них по 8 вершин, степень каждой из которых равна 3?
  в) они связны, без циклов и содержат по 6 рёбер?

Прислать комментарий     Решение

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .