Версия для печати
Убрать все задачи
В равнобедренном треугольнике
ABC с основанием
AC
проведена биссектриса
CD. Прямая, проходящая через точку
D
перпендикулярно
DC, пересекает
AC в точке
E. Докажите,
что
EC = 2
AD.

Решение
Дана трапеция
ABCD с основанием
AD. Биссектрисы
внешних углов при вершинах
A и
B пересекаются в точке
P, а при
вершинах
C и
D — в точке
Q. Докажите, что длина отрезка
PQ
равна половине периметра трапеции.


Решение
Пусть
M — середина стороны
AB треугольника
ABC.
Докажите, что
CM =
AB/2 тогда и только тогда, когда
ACB = 90
o.


Решение
Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A, C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B, D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.

Решение