Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 40]
Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении 1 : 2.
|
|
Сложность: 4- Классы: 9,10
|
Плоскость разбита тремя сериями параллельных прямых на равные между собой
равносторонние треугольники.
Существуют ли четыре вершины этих треугольников, образующие квадрат?
Дано натуральное число n. Рассматриваются такие тройки различных
натуральных чисел (a, b, c), что a + b + c = n. Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
а) K(n) > n/6 – 1;
б) K(n) < 2n/9.
|
|
Сложность: 4- Классы: 8,9,10
|
Рассмотрим все возможные наборы чисел из множества {1, 2, 3, ..., n}, не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна (n + 1)! – 1.
|
|
Сложность: 4- Классы: 9,10
|
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
а) общее число прогрессий конечно;
б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 40]