Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На доске написаны числа 2, 3, 4, ..., 29, 30. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?

Вниз   Решение


В доме $8N$ этажей. В подъезде два лифта, в каждом из которых кнопки расположены в виде прямоугольника $N\times 8$ ($N$ строк, 8 столбцов), но пронумерованы по-разному: в одном «слева направо, снизу вверх», а в другом «снизу вверх, слева направо» (пример для $N=3$ см. на рисунке). Даня нажимает кнопку своего этажа, не глядя на нумерацию, потому что эта кнопка в обоих лифтах расположена на одном и том же месте. На каком этаже он может жить? (Например, для $N=3$ ответ 1 и 24. Требуется найти все возможные варианты в зависимости от $N$.)

17 18 19 20 21 22 23 24
9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8
3 6 9 12 15 18 21 24
2 5 8 11 14 17 20 23
1 4 7 10 13 16 19 22

ВверхВниз   Решение


Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 56478

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9

Прямая l пересекает стороны AB и AD и диагональ AC параллелограмма ABCD в точках E, F и G соответственно. Докажите, что  AB/AE + AD/AF = AC/AG.

Прислать комментарий     Решение

Задача 56479

Темы:   [ Признаки и свойства параллелограмма ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 9

Пусть AC – большая из диагоналей параллелограмма ABCD. Из точки C на продолжения сторон AB и AD опущены перпендикуляры CE и CF соответственно. Докажите, что  AB·AE + AD·AF = AC².

Прислать комментарий     Решение

Задача 56480

Тема:   [ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9

Углы треугольника ABC связаны соотношением  3α + 2β = 180°. Докажите, что  a² + bc = c².

Прислать комментарий     Решение

Задача 56482

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные треугольники (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 9

Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.

Прислать комментарий     Решение

Задача 56483

Темы:   [ Биссектриса угла ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9

На биссектрисе угла с вершиной C взята точка P. Прямая, проходящая через точку P, высекает на сторонах угла отрезки длиной a и b.
Докажите, что величина  1/a + 1/b  не зависит от выбора этой прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .