Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Зная, что число 1993 простое, выясните, существуют ли такие натуральные числа x и y, что
  а)  x² – y² = 1993;
  б)  x³ – y³ = 1993;
  в)  x4y4 = 1993?

Вниз   Решение


Из натурального числа вычли сумму его цифр, из полученного числа снова вычли сумму его (полученного числа) цифр и т.д. После одиннадцати таких вычитаний получился нуль. С какого числа начинали?

ВверхВниз   Решение


Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.

ВверхВниз   Решение


Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

ВверхВниз   Решение


Наташа и Инна купили по одинаковой коробке чая в пакетиках. Известно, что одного пакетика хватает на две или три чашки чая. Этой коробки Наташе хватило на 41 чашку чая, а Инне – на 58. Сколько пакетиков было в коробке?

ВверхВниз   Решение


В одной из вершин куба ABCDEFGH сидит заяц, но охотникам он не виден. Три охотника стреляют залпом, при этом они могут ''поразить'' любые три вершины куба. Если они не попадают в зайца, то до следующего залпа заяц перебегает в одну из трёх соседних (по ребру) вершин куба. Укажите, как стрелять охотникам, чтобы обязательно попасть в зайца за четыре залпа.

(В решении достаточно написать четыре тройки вершин, в которые последовательно стреляют охотники.)

ВверхВниз   Решение


Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

ВверхВниз   Решение


Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.

ВверхВниз   Решение


Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

ВверхВниз   Решение


Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 30322  (#009)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

Прислать комментарий     Решение

Задача 60340  (#010)

Темы:   [ Правило произведения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8

Алфавит племени Мумбо-Юмбо состоит из трёх букв. Словом является любая последовательность, состоящая не более чем из четырёх букв.
Сколько слов в языке племени Мумбо-Юмбо?

Прислать комментарий     Решение

Задача 30324  (#011)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 30325  (#012)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно сделать трёхцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов?

Прислать комментарий     Решение

Задача 102877  (#013)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
Сложность: 2
Классы: 6,7,8

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .