ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.

Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.

Вниз   Решение


Из чисел от 1 до 2n выбрано  n + 1  число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое.

ВверхВниз   Решение


По окружности, сделанной из проволоки, двигаются бусинки с одинаковой угловой скоростью, некоторые - по часовой стрелке, некоторые - против. При столкновении две бусинки разлетаются в разные стороны с прежними скоростями. Докажите, что в некоторый момент начальное расположение бусинок повторится.

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 644]      



Задача 102983

Тема:   [ Взвешивания ]
Сложность: 2
Классы: 5

Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету?
Прислать комментарий     Решение


Задача 102985

Темы:   [ Теория алгоритмов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 5,6

На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?
Прислать комментарий     Решение


Задача 102989

Темы:   [ Задачи-шутки ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В книжном шкафу стоят по порядку четыре тома собрания сочинений Астрид Линдгрен, по 200 страниц в каждом томе. Червячок, живущий в этом собрании прогрыз путь от первой страницы первого тома до последней страницы четвертого тома. Сколько страниц прогрыз червячок?
Прислать комментарий     Решение


Задача 102991

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 5,6

а) Может ли число, составленное только из четвёрок, делиться на число, составленное только из троек?
б) А наоборот?

Прислать комментарий     Решение

Задача 102998

Темы:   [ Ребусы ]
[ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 5,6,7

Может ли быть верным равенство  К×О×Т = У×Ч×Е×Н×Ы×Й,  если в него вместо букв подставить цифры от 1 до 9? Разным буквам соответствуют разные цифры.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .