ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Построить треугольник по двум сторонам так, чтобы медианы этих сторон были взаимно перпендикулярны. Сколько корней имеет уравнение sin x=x/100 ? Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются. На окружности даны три точки A,B,C . Построить (циркулем и линейкой) на этой окружности четвёртую точку D так, чтобы в полученный четырёхугольник можно было бы вписать окружность. Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре? Сторона основания ABCD правильной пирамиды SABCD равна
1) объём пирамиды CMSK; 2) угол между прямыми CM и SK; 3) расстояние между прямыми CM и SK. Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n. |
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 644]
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?
а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?
Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке